Holography × Distance Functions & Fractals: Key References

Holography × Distance Functions & Fractals: Key References

  1. Czech & Lamprou (2014). Holographic definition of points and distances. Phys. Rev. D 90, 106005. arXiv:1409.4473
  2. Czech, Lamprou, McCandlish & Sully (2015). Integral Geometry and Holography. JHEP 10 (2015) 175. arXiv:1505.05515
  3. Guralnik, Guralnik & Pehlevan (2019). Holography, Fractals and the Weyl Anomaly. arXiv:1802.05362
  4. Mureika (2007). Fractal Holography: a geometric re-interpretation of cosmological large scale structure. arXiv:gr-qc/0609001
  5. Bao & Naskar (2022). Code Properties of the Holographic Sierpinski Triangle. Phys. Rev. D 106, 126006. arXiv:2207.03366
  6. Ageev (2023). Exploring holography with boundary fractal-like structures. Phys. Rev. D 108, 026009. arXiv:2304.00949
  7. Brown, Freedman, Lin & Susskind (2023). Universality in long-distance geometry and quantum complexity. Nature 622, 58–62. DOI

Comments

Popular posts from this blog

Japan Jazz Anthology Select: Jazz of the SP Era

In practice, the most workable approach is to measure a composite “civility score” built from multiple indicators.